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Taming math and physics using SymPy
Tutorial based on the No bullshit guide series of textbooks by Ivan Savov

Abstract—Most people consider math and physics to be scary
beasts from which it is best to keep one’s distance. Computers,
however, can help us tame the complexity and tedious arithmetic
manipulations associated with these subjects. Indeed, math and
physics are much more approachable once you have the power of
computers on your side.

This tutorial serves a dual purpose. On one hand, it serves
as a review of the fundamental concepts of mathematics for
computer-literate people. On the other hand, this tutorial serves
to demonstrate to students how a computer algebra system can
help them with their classwork. A word of warning is in order.
Please don’t use SymPy to avoid the suffering associated with your
homework! Teachers assign homework problems to you because
they want you to learn. Do your homework by hand, but if you
want, you can check your answers using SymPy. Better yet, use
SymPy to invent extra practice problems for yourself.
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Introduction

You can use a computer algebra system (CAS) to compute compli-
cated math expressions, solve equations, perform calculus procedures,
and simulate physics systems.

All computer algebra systems offer essentially the same function-
ality, so it doesn’t matter which system you use: there are free
systems like SymPy, Magma, or Octave, and commercial systems like
Maple, MATLAB, and Mathematica. This tutorial is an introduction to
SymPy, which is a symbolic computer algebra system written in the
programming language Python. In a symbolic CAS, numbers and
operations are represented symbolically, so the answers obtained are
exact. For example, the number

√
2 is represented in SymPy as the

object Pow(2,1/2), whereas in numerical computer algebra systems
like Octave, the number

√
2 is represented as the approximation

1.41421356237310 (a float). For most purposes the approxima-
tion is okay, but sometimes approximations can lead to problems:
float(sqrt(2))*float(sqrt(2)) = 2.00000000000000044 6= 2. Be-
cause SymPy uses exact representations, you’ll never run into such
problems: Pow(2,1/2)*Pow(2,1/2)= 2.

This tutorial is organized as follows. We’ll begin by introducing the
SymPy basics and the bread-and-butter functions used for manipulat-
ing expressions and solving equations. Afterward, we’ll discuss the
SymPy functions that implement calculus operations like differentiation
and integration. We’ll also introduce the functions used to deal with
vectors and complex numbers. Later we’ll see how to use vectors and
integrals to understand Newtonian mechanics. In the last section,
we’ll introduce the linear algebra functions available in SymPy.

This tutorial presents many explanations as blocks of code. Be sure
to try the code examples on your own by typing the commands into
SymPy. It’s always important to verify for yourself!

Using SymPy

The easiest way to use SymPy, provided you’re connected to the
internet, is to visit http://live.sympy.org. You’ll be presented with
an interactive prompt into which you can enter your commands—right
in your browser.

If you want to use SymPy on your own computer, you must install
Python and the python package sympy. You can then open a command
prompt and start a SymPy session using:
you@host$ python
Python X.Y.Z
[GCC a.b.c (Build Info)] on platform
Type "help", "copyright", or "license" for more information.
>>> from sympy import *
>>>

The >>> prompt indicates you’re in the Python shell which accepts
Python commands. The command from sympy import * imports all
the SymPy functions into the current namespace. All SymPy functions
are now available to you. To exit the python shell press CTRL+D.

I highly recommend you also install ipython, which is an improved
interactive python shell. If you have ipython and SymPy installed,
you can start an ipython shell with SymPy pre-imported using the
command isympy. For an even better experience, you can try jupyter
notebook, which is a web frontend for the ipython shell.

Each section of this tutorial begins with a python import statement
for the functions used in that section. If you use the statement from
sympy import * in the beginning of your code, you don’t need to
run these individual import statements, but I’ve included them so
you’ll know which SymPy vocabulary is covered in each section.

I. Fundamentals of mathematics

Let’s begin by learning about the basic SymPy objects and the
operations we can carry out on them. We’ll learn the SymPy equivalents
of many math verbs like “to solve” (an equation), “to expand” (an
expression), “to factor” (a polynomial).

Numbers
>>> from sympy import sympify, S, evalf, N

In Python, there are two types of number objects: ints and floats.
>>> 3
3 # an int
>>> 3.0
3.0 # a float

Integer objects in Python are a faithful representation of the set of
integers Z = {. . . ,−2,−1, 0, 1, 2, . . .}. Floating point numbers are
approximate representations of the reals R. Regardless of its absolute
size, a floating point number is only accurate to 16 decimals.
Special care is required when specifying rational numbers, because
integer division might not produce the answer you want. In other
words, Python will not automatically convert the answer to a floating
point number, but instead round the answer to the closest integer:
>>> 1/7
0 # int/int gives int

To avoid this problem, you can force float division by using the
number 1.0 instead of 1:
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>>> 1.0/7
0.14285714285714285 # float/int gives float

This result is better, but it’s still only an approximation of the exact
number 1

7 ∈ Q, since a float has 16 decimals while the decimal
expansion of 1

7 is infinitely long. To obtain an exact representation
of 1

7 you need to create a SymPy expression. You can sympify any
expression using the shortcut function S():
S('1/7')
1/7 # = Rational(1,7)

Note the input to S() is specified as a text string delimited by quotes.
We could have achieved the same result using S(’1’)/7 since a SymPy
object divided by an int is a SymPy object.

Except for the tricky Python division operator, other math operators
like addition +, subtraction -, and multiplication * work as you would
expect. The syntax ** is used in Python to denote exponentiation:
>>> 2**10 # same as S('2^10')
1024

When solving math problems, it’s best to work with SymPy objects,
and wait to compute the numeric answer in the end. To obtain a
numeric approximation of a SymPy object as a float, call its .evalf()
method:
>>> pi
pi
>>> pi.evalf()
3.14159265358979

The method .n() is equivalent to .evalf(). The global SymPy
function N() can also be used to to compute numerical values. You can
easily change the number of digits of precision of the approximation.
Enter pi.n(400) to obtain an approximation of π to 400 decimals.

Symbols
>>> from sympy import Symbol, symbols

Python is a civilized language so there’s no need to define variables
before assigning values to them. When you write a = 3, you define a
new name a and set it to the value 3. You can now use the name a
in subsequent calculations.

Most interesting SymPy calculations require us to define symbols,
which are the SymPy objects for representing variables and unknowns.
For your convenience, when live.sympy.org starts, it runs the
following commands automatically:
>>> from __future__ import division
>>> from sympy import *
>>> x, y, z, t = symbols('x y z t')
>>> k, m, n = symbols('k m n', integer=True)
>>> f, g, h = symbols('f g h', cls=Function)

The first statement instructs python to convert 1/7 to 1.0/7 when
dividing, potentially saving you from any int division confusion. The
second statement imports all the SymPy functions. The remaining
statements define some generic symbols x, y, z, and t, and several
other symbols with special properties.

Note the difference between the following two statements:
>>> x + 2
x + 2 # an Add expression
>>> p + 2
NameError: name 'p' is not defined

The name x is defined as a symbol, so SymPy knows that x + 2 is an
expression; but the variable p is not defined, so SymPy doesn’t know
what to make of p + 2. To use p in expressions, you must first define
it as a symbol:
>>> p = Symbol('p') # the same as p = symbols('p')
>>> p + 2

p + 2 # = Add(Symbol('p'), Integer(2))

You can define a sequence of variables using the following notation:
>>> a0, a1, a2, a3 = symbols('a0:4')

You can use any name you want for a variable, but it’s best if you
avoid the letters Q,C,O,S,I,N and E because they have special uses
in SymPy: I is the unit imaginary number i ≡

√
−1, E is the base of

the natural logarithm, S() is the sympify function, N() is used to
obtain numeric approximations, and O is used for big-O notation.

The underscore symbol _ is a special variable that contains the result
of the last printed value. The variable _ is analogous to the ans button
on certain calculators, and is useful in multi-step calculations:
>>> 3+3
6
>>> _*2
12

Expressions
>>> from sympy import simplify, factor, expand, collect

You define SymPy expressions by combining symbols with basic math
operations and other functions:
>>> expr = 2*x + 3*x - sin(x) - 3*x + 42
>>> simplify(expr)
2*x - sin(x) + 42

The function simplify can be used on any expression to simplify
it. The examples below illustrate other useful SymPy functions that
correspond to common mathematical operations on expressions:
>>> factor( x**2-2*x-8 )
(x - 4)*(x + 2)
>>> expand( (x-4)*(x+2) )
x**2 - 2*x - 8
>>> collect(x**2 + x*b + a*x + a*b, x)
x**2 + (a+b)*x + a*b # collect terms for diff. pows of x

To substitute a given value into an expression, call the .subs()
method, passing in a python dictionary object { key:val, ... }
with the symbol–value substitutions you want to make:
>>> expr = sin(x) + cos(y)
>>> expr
sin(x) + cos(y)
>>> expr.subs({x:1, y:2})
sin(1) + cos(2)
>>> expr.subs({x:1, y:2}).n()
0.425324148260754

Note how we used .n() to obtain the expression’s numeric value.

Solving equations
>>> from sympy import solve

The function solve is the main workhorse in SymPy. This incredibly
powerful function knows how to solve all kinds of equations. In fact
solve can solve pretty much any equation! When high school students
learn about this function, they get really angry—why did they spend
five years of their life learning to solve various equations by hand,
when all along there was this solve thing that could do all the math
for them? Don’t worry, learning math is never a waste of time.

The function solve takes two arguments. Use solve(expr,var) to
solve the equation expr==0 for the variable var. You can rewrite any
equation in the form expr==0 by moving all the terms to one side
of the equation; the solutions to A(x) = B(x) are the same as the
solutions to A(x)−B(x) = 0.

For example, to solve the quadratic equation x2 + 2x− 8 = 0, use
>>> solve( x**2 + 2*x - 8, x)

http://live.sympy.org
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[2, -4]

In this case the equation has two solutions so solve returns a list.
Check that x = 2 and x = −4 satisfy the equation x2 + 2x− 8 = 0.

The best part about solve and SymPy is that you can obtain symbolic
answers when solving equations. Instead of solving one specific
quadratic equation, we can solve all possible equations of the form
ax2 + bx+ c = 0 using the following steps:
>>> a, b, c = symbols('a b c')
>>> solve( a*x**2 + b*x + c, x)
[(-b + sqrt(b**2 - 4*a*c))/(2*a), (-b-sqrt(b**2-4*a*c))/(2*a)]

In this case solve calculated the solution in terms of the symbols
a, b, and c. You should be able to recognize the expressions in the
solution—it’s the quadratic formula x1,2 = −b±

√
b2−4ac

2a .

To solve a specific equation like x2 + 2x− 8 = 0, we can substitute
the coefficients a = 1, b = 2, and c = −8 into the general solution to
obtain the same result:
>>> gen_sol = solve( a*x**2 + b*x + c, x)
>>> [ gen_sol[0].subs({'a':1,'b':2,'c':-8}),

gen_sol[1].subs({'a':1,'b':2,'c':-8}) ]
[2, -4]

To solve a system of equations, you can feed solve with the list of
equations as the first argument, and specify the list of unknowns you
want to solve for as the second argument. For example, to solve for x
and y in the system of equations x+ y = 3 and 3x− 2y = 0, use
>>> solve([x + y - 3, 3*x - 2*y], [x, y])
{x: 6/5, y: 9/5}

The function solve is like a Swiss Army knife you can use to solve
all kind of problems. Suppose you want to complete the square in the
expression x2 − 4x+ 7, that is, you want to find constants h and k
such that x2−4x+7 = (x−h)2 +k. There is no special “complete the
square” function in SymPy, but you can call solve on the equation
(x− h)2 + k − (x2 − 4x+ 7) = 0 to find the unknowns h and k:
>>> h, k = symbols('h k')
>>> solve( (x-h)**2 + k - (x**2-4*x+7), [h,k] )
[(2, 3)] # so h = 2 and k = 3
>>> ((x-2)**2+3).expand() # verify...
x**2 - 4*x + 7

Learn the basic SymPy commands and you’ll never need to suffer
another tedious arithmetic calculation painstakingly performed by
hand again!

Rational functions

>>> from sympy import together, apart

By default, SymPy will not combine or split rational expressions.
You need to use together to symbolically calculate the addition of
fractions:
>>> a, b, c, d = symbols('a b c d')
>>> a/b + c/d
a/b + c/d
>>> together(a/b + c/d)
(a*d + b*c)/(b*d)

Alternately, if you have a rational expression and want to divide the
numerator by the denominator, use the apart function:
>>> apart( (x**2+x+4)/(x+2) )
x - 1 + 6/(x + 2)

Exponentials and logarithms

Euler’s number e = 2.71828 . . . is defined one of several ways,

e ≡ lim
n→∞

(
1 + 1

n

)n
≡ lim
ε→0

(1 + ε)1/ε ≡
∞∑
n=0

1
n! ,

and is denoted E in SymPy. Using exp(x) is equivalent to E**x.

The functions log and ln both compute the logarithm base e:
>>> log(E**3) # same as ln(E**3)
3

By default, SymPy assumes the inputs to functions like exp and log are
complex numbers, so it will not expand certain logarithmic expressions.
However, indicating to SymPy that the inputs are positive real numbers
will make the expansions work:
>>> x, y = symbols('x y')
>>> log(x*y).expand()
log(x*y)
>>> a, b = symbols('a b', positive=True)
>>> log(a*b).expand()
log(a) + log(b)

Polynomials

Let’s define a polynomial P with roots at x = 1, x = 2, and x = 3:
>>> P = (x-1)*(x-2)*(x-3)
>>> P
(x - 1)*(x - 2)*(x - 3)

To see the expanded version of the polynomial, call its expand
method:
>>> P.expand()
x**3 - 6*x**2 + 11*x - 6

When the polynomial is expressed in it’s expanded form P (x) =
x3 − 62 + 11x − 6, we can’t immediately identify its roots. This is
why the factored form P (x) = (x− 1)(x− 2)(x− 3) is preferable. To
factor a polynomial, call its factor method or simplify it:
>>> P.factor()
(x - 1)*(x - 2)*(x - 3)
>>> P.simplify()
(x - 1)*(x - 2)*(x - 3)

Recall that the roots of the polynomial P (x) are defined as the
solutions to the equation P (x) = 0. We can use the solve function
to find the roots of the polynomial:
>>> roots = solve(P,x)
>>> roots
[1, 2, 3]
# let's check if P equals (x-1)(x-2)(x-3)
>>> simplify( P - (x-roots[0])*(x-roots[1])*(x-roots[2]) )
0

Equality checking

In the last example, we used the simplify function to check whether
two expressions were equal. This way of checking equality works
because P = Q if and only if P − Q = 0. This is the best way to
check if two expressions are equal in SymPy because it attempts all
possible simplifications when comparing the expressions. Below is
a list of other ways to check whether two quantities are equal with
example cases where they fail:
>>> p = (x-5)*(x+5)
>>> q = x**2 - 25
>>> p == q # fail
False
>>> p - q == 0 # fail
False
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>>> simplify(p - q) == 0
True
>>> sin(x)**2 + cos(x)**2 == 1 # fail
False
>>> simplify( sin(x)**2 + cos(x)**2 - 1 ) == 0
True

Trigonometry
from sympy import sin, cos, tan, trigsimp, expand_trig

The trigonometric functions sin and cos take inputs in radians:
>>> sin(pi/6)
1/2
>>> cos(pi/6)
sqrt(3)/2

For angles in degrees, you need a conversion factor of π
180 [rad/

◦]:
>>> sin(30*pi/180) # 30 deg = pi/6 rads
1/2

The inverse trigonometric functions sin−1(x) ≡ arcsin(x) and
cos−1(x) ≡ arccos(x) are used as follows:
>>> asin(1/2)
pi/6
>>> acos(sqrt(3)/2)
pi/6

Recall that tan(x) ≡ sin(x)
cos(x) . The inverse function of tan(x) is

tan−1(x) ≡ arctan(x) ≡ atan(x)
>>> tan(pi/6)
1/sqrt(3) # = ( 1/2 )/( sqrt(3)/2 )
>>> atan( 1/sqrt(3) )
pi/6

The function acos returns angles in the range [0, π], while asin and
atan return angles in the range [−π2 ,

π
2 ].

Here are some trigonometric identities that SymPy knows:
>>> sin(x) == cos(x - pi/2)
True
>>> simplify( sin(x)*cos(y)+cos(x)*sin(y) )
sin(x + y)
>>> e = 2*sin(x)**2 + 2*cos(x)**2
>>> trigsimp(e)
2
>>> trigsimp(log(e))
log(2*sin(x)**2 + 2*cos(x)**2)
>>> trigsimp(log(e), deep=True)
log(2)
>>> simplify(sin(x)**4 - 2*cos(x)**2*sin(x)**2 + cos(x)**4)
cos(4*x)/2 + 1/2

The function trigsimp does essentially the same job as simplify.

If instead of simplifying you want to expand a trig expression, you
should use expand_trig, because the default expand won’t touch trig
functions:
>>> expand(sin(2*x)) # = (sin(2*x)).expand()
sin(2*x)
>>> expand_trig(sin(2*x)) # = (sin(2*x)).expand(trig=True)
2*sin(x)*cos(x)

Hyperbolic trigonometric functions

The hyperbolic sine and cosine in SymPy are denoted sinh and cosh
respectively and SymPy is smart enough to recognize them when
simplifying expressions:
>>> simplify( (exp(x)+exp(-x))/2 )
cosh(x)
>>> simplify( (exp(x)-exp(-x))/2 )

sinh(x)

Recall that x = cosh(µ) and y = sinh(µ) are defined as x and y
coordinates of a point on the the hyperbola with equation x2−y2 = 1
and therefore satisfy the identity cosh2 x− sinh2 x = 1:
>>> simplify( cosh(x)**2 - sinh(x)**2 )
1

II. Complex numbers

>>> from sympy import I, re, im, Abs, arg, conjugate

Ever since Newton, the word “number” has been used to refer to one
of the following types of math objects: the naturals N, the integers
Z, the rationals Q, and the real numbers R. Each set of numbers is
associated with a different class of equations. The natural numbers
N appear as solutions of the equation m+ n = x, where m and n are
natural numbers (denoted m,n ∈ N). The integers Z are the solutions
to equations of the form x+m = n, where m,n ∈ N. The rational
numbers Q are necessary to solve for x in mx = n, with m,n ∈ Z.
The solutions to x2 = 2 are irrational (so /∈ Q) so we need an even
larger set that contains all possible numbers: real set of numbers R.
A pattern emerges where more complicated equations require the
invention of new types of numbers.

Consider the quadratic equation x2 = −1. There are no real solutions
to this equation, but we can define an imaginary number i =

√
−1

(denoted I in SymPy) that satisfies this equation:
>>> I*I
-1
>>> solve( x**2 + 1 , x)
[I, -I]

The solutions are x = i and x = −i, and indeed we can verify that
i2 + 1 = 0 and (−i)2 + 1 = 0 since i2 = −1.

The complex numbers C are defined as {a+ bi | a, b ∈ R}. Complex
numbers contain a real part and an imaginary part:
>>> z = 4 + 3*I
>>> z
4 + 3*I
>>> re(z)
4
>>> im(z)
3

The polar representation of a complex number is z≡ |z|∠θ≡ |z|eiθ.
For a complex number z = a + bi, the quantity |z| =

√
a2 + b2 is

known as the absolute value of z, and θ is its phase or its argument:
>>> Abs(z)
5
>>> arg(z)
atan(3/4)

The complex conjugate of z = a+ bi is the number z̄ = a− bi:
>>> conjugate( z )
4 - 3*I

Complex conjugation is important for computing the absolute value
of z (|z| ≡

√
zz̄) and for division by z ( 1

z
≡ z̄
|z|2 ).

Euler’s formula
>>> from sympy import expand, rewrite

Euler’s formula shows an important relation between the exponential
function ex and the trigonometric functions sin(x) and cos(x):

eix = cosx+ i sin x.

To obtain this result in SymPy, you must specify that the number x is
real and also tell expand that you’re interested in complex expansions:

https://en.wikipedia.org/wiki/Euler's_formula
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>>> x = symbols('x', real=True)
>>> exp(I*x).expand(complex=True)
cos(x) + I*sin(x)
>>> re( exp(I*x) )
cos(x)
>>> im( exp(I*x) )
sin(x)

Basically, cos(x) is the real part of eix, and sin(x) is the imaginary
part of eix. Whaaat? I know it’s weird, but weird things are bound
to happen when you input imaginary numbers to functions.

Euler’s formula is often used to rewrite the functions sin and cos in
terms of complex exponentials. For example,
>>> (cos(x)).rewrite(exp)
exp(I*x)/2 + exp(-I*x)/2

Compare this expression with the definition of hyperbolic cosine.

III. Calculus

Calculus is the study of the properties of functions. The operations of
calculus are used to describe the limit behaviour of functions, calculate
their rates of change, and calculate the areas under their graphs. In
this section we’ll learn about the SymPy functions for calculating
limits, derivatives, integrals, and summations.

Infinity
from sympy import oo

The infinity symbol is denoted oo (two lowercase os) in SymPy. Infinity
is not a number but a process: the process of counting forever. Thus,
∞ + 1 = ∞, ∞ is greater than any finite number, and 1/∞ is an
infinitely small number. Sympy knows how to correctly treat infinity
in expressions:
>>> oo+1
oo
>>> 5000 < oo
True
>>> 1/oo
0

Limits
from sympy import limit

We use limits to describe, with mathematical precision, infinitely large
quantities, infinitely small quantities, and procedures with infinitely
many steps.

The number e is defined as the limit e ≡ lim
n→∞

(
1 + 1

n

)n
:

>>> limit( (1+1/n)**n, n, oo)
E # = 2.71828182845905

This limit expression describes the annual growth rate of a loan with
a nominal interest rate of 100% and infinitely frequent compounding.
Borrow $1000 in such a scheme, and you’ll owe $2718.28 after one year.

Limits are also useful to describe the behaviour of functions. Consider
the function f(x) = 1

x
. The limit command shows us what happens

to f(x) near x = 0 and as x goes to infinity:
>>> limit( 1/x, x, 0, dir="+")
oo
>>> limit( 1/x, x, 0, dir="-")
-oo
>>> limit( 1/x, x, oo)
0

As x becomes larger and larger, the fraction 1
x

becomes smaller
and smaller. In the limit where x goes to infinity, 1

x
approaches

zero: limx→∞
1
x

= 0. On the other hand, when x takes on smaller
and smaller positive values, the expression 1

x
becomes infinite:

limx→0+
1
x

= ∞. When x approaches 0 from the left, we have
limx→0−

1
x

= −∞. If these calculations are not clear to you, study
the graph of f(x) = 1

x
.

Here are some other examples of limits:
>>> limit(sin(x)/x, x, 0)
1
>>> limit(sin(x)**2/x, x, 0)
0
>>> limit(exp(x)/x**100,x,oo) # which is bigger e^x or x^100 ?
oo # exp f >> all poly f for big x

Limits are used to define the derivative and the integral operations.

Derivatives

The derivative function, denoted f ′(x), d
dx
f(x), df

dx
, or dy

dx
, describes

the rate of change of the function f(x). The SymPy function diff
computes the derivative of any expression:
>>> diff(x**3, x)
3*x**2

The differentiation operation knows about the product rule
[f(x)g(x)]′ = f ′(x)g(x) + f(x)g′(x), the chain rule f(g(x))′ =
f ′(g(x))g′(x), and the quotient rule

[
f(x)
g(x)

]′
= f ′(x)g(x)−f(x)g′(x)

g(x)2 :
>>> diff( x**2*sin(x), x )
2*x*sin(x) + x**2*cos(x)
>>> diff( sin(x**2), x )
cos(x**2)*2*x
>>> diff( x**2/sin(x), x )
(2*x*sin(x) - x**2*cos(x))/sin(x)**2

The second derivative of a function f is diff(f,x,2):
>>> diff(x**3, x, 2) # same as diff(diff(x**3, x), x)
6*x

The exponential function f(x) = ex is special because it is equal to
its derivative:
>>> diff( exp(x), x) # same as diff( E**x, x)
exp(x) # same as E**x

A differential equation is an equation that relates some unknown
function f(x) to its derivative. An example of a differential equation
is f ′(x) = f(x). What is the function f(x) which is equal to its
derivative? You can either try to guess what f(x) is or use the dsolve
function:
>>> x = symbols('x')
>>> f = symbols('f', cls=Function) # can now use f(x)
>>> dsolve( f(x) - diff(f(x),x), f(x) )
f(x) == C1*exp(x)

We’ll discuss dsolve again in the section on mechanics.

Tangent lines

The tangent line to the function f(x) at x = x0 is the line that passes
through the point (x0, f(x0)) and has the same slope as the function
at that point. The tangent line to the function f(x) at the point
x = x0 is described by the equation

T1(x) = f(x0) + f ′(x0)(x− x0).

What is the equation of the tangent line to f(x) = 1
2x

2 at x0 = 1?
>>> f = S('1/2')*x**2
>>> f
x**2/2
>>> df = diff(f, x)
>>> df
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x
>>> T_1 = f.subs({x:1}) + df.subs({x:1})*(x - 1)
>>> T_1
x - 1/2 # y = x - 1/2

The tangent line T1(x) has the same value and slope as the function
f(x) at x = 1:
>>> T_1.subs({x:1}) == f.subs({x:1})
True
>>> diff(T_1, x).subs({x:1}) == diff(f, x).subs({x:1})
True

Optimization

Optimization is about choosing an input for a function f(x) that
results in the best value for f(x). The best value usually means the
maximum value (if the function represents something desirable like
profits) or the minimum value (if the function represents something
undesirable like costs).

The derivative f ′(x) encodes the information about the slope of f(x).
Positive slope f ′(x) > 0 means f(x) is increasing, negative slope
f ′(x) < 0 means f(x) is decreasing, and zero slope f ′(x) = 0 means
the graph of the function is horizontal. The critical points of a function
f(x) are the solutions to the equation f ′(x) = 0. Each critical point
is a candidate to be either a maximum or a minimum of the function.

The second derivative f ′′(x) encodes the information about the
curvature of f(x). Positive curvature means the function looks like x2,
negative curvature means the function looks like −x2.

Let’s find the critical points of the function f(x) = x3 − 2x2 + x and
use the information from its second derivative to find the maximum
of the function on the interval x ∈ [0, 1].
>>> x = Symbol('x')
>>> f = x**3-2*x**2+x
>>> diff(f, x)
3*x**2 - 4*x + 1
>>> sols = solve( diff(f,x), x)
>>> sols
[1/3, 1]
>>> diff(diff(f,x), x).subs( {x:sols[0]} )
-2
>>> diff(diff(f,x), x).subs( {x:sols[1]} )
2

It will help to look at the graph of this function. The point x = 1
3

is a local maximum because it is a critical point of f(x) where the
curvature is negative, meaning f(x) looks like the peak of a mountain
at x = 1

3 . The maximum value of f(x) on the interval x ∈ [0, 1]
is f
(

1
3

)
= 4

27 . The point x = 1 is a local minimum because it is a
critical point with positive curvature, meaning f(x) looks like the
bottom of a valley at x = 1.

Integrals

The integral of f(x) corresponds to the computation of the area under
the graph of f(x). The area under f(x) between the points x = a
and x = b is denoted as follows:

A(a, b) =
∫ b

a

f(x) dx.

The integral function F corresponds to the area calculation as a
function of the upper limit of integration:

F (c) ≡
∫ c

0
f(x) dx .

The area under f(x) between x = a and x = b is obtained by
calculating the change in the integral function:

A(a, b) =
∫ b

a

f(x) dx = F (b)− F (a).

In SymPy we use integrate(f, x) to obtain the integral function
F (x) of any function f(x): F (x) =

∫ x
0 f(u) du.

>>> integrate(x**3, x)
x**4/4
>>> integrate(sin(x), x)
-cos(x)
>>> integrate(ln(x), x)
x*log(x) - x

This is known as an indefinite integral since the limits of integration
are not defined.

In contrast, a definite integral computes the area under f(x) between
x = a and x = b. Use integrate(f, (x,a,b)) to compute the
definite integrals of the form A(a, b) =

∫ b
a
f(x) dx:

>>> integrate(x**3, (x,0,1))
1/4 # the area under x^3 from x=0 to x=1

We can obtain the same area by first calculating the indefinite integral
F (c) =

∫ c
0 f(x) dx, then using A(a, b) = F (x)

∣∣b
a
≡ F (b)− F (a):

>>> F = integrate(x**3, x)
>>> F.subs({x:1}) - F.subs({x:0})
1/4

Integrals correspond to signed area calculations:
>>> integrate(sin(x), (x,0,pi))
2
>>> integrate(sin(x), (x,pi,2*pi))
-2
>>> integrate(sin(x), (x,0,2*pi))
0

During the first half of its 2π-cycle, the graph of sin(x) is above the
x-axis, so it has a positive contribution to the area under the curve.
During the second half of its cycle (from x = π to x = 2π), sin(x) is
below the x-axis, so it contributes negative area. Draw a graph of
sin(x) to see what is going on.

Fundamental theorem of calculus

The integral is the “inverse operation” of the derivative. If you perform
the integral operation followed by the derivative operation on some
function, you’ll obtain the same function:(

d

dx
◦
∫
dx

)
f(x) ≡ d

dx

∫ x

c

f(u) du = f(x).

>>> f = x**2
>>> F = integrate(f, x)
>>> F
x**3/3 # + C
>>> diff(F, x)
x**2

Alternately, if you compute the derivative of a function followed
by the integral, you will obtain the original function f(x) (up to a
constant):(∫

dx ◦ d

dx

)
f(x) ≡

∫ x

c

f ′(u) du = f(x) + C.

>>> f = x**2
>>> df = diff(f, x)
>>> df
2*x
>>> integrate(df, x)

https://www.google.ca/#q=plot+x**3-2*x**2++%2B+x&safe=off
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x**2 # + C

The fundamental theorem of calculus is important because it tells us
how to solve differential equations. If we have to solve for f(x) in the
differential equation d

dx
f(x) = g(x), we can take the integral on both

sides of the equation to obtain the answer f(x) =
∫
g(x) dx+ C.

Sequences

Sequences are functions that take whole numbers as inputs. Instead
of continuous inputs x ∈ R, sequences take natural numbers n ∈ N
as inputs. We denote sequences as an instead of the usual function
notation a(n).

We define a sequence by specifying an expression for its nth term:
>>> a_n = 1/n
>>> b_n = 1/factorial(n)

Substitute the desired value of n to see the value of the nth term:
>>> a_n.subs({n:5})
1/5

The Python list comprehension syntax [item for item in list]
can be used to print the sequence values for some range of indices:
>>> [ a_n.subs({n:i}) for i in range(0,8) ]
[oo, 1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7]
>>> [ b_n.subs({n:i}) for i in range(0,8) ]
[1, 1, 1/2, 1/6, 1/24, 1/120, 1/720, 1/5040]

Observe that an is not properly defined for n = 0 since 1
0 is a division-

by-zero error. To be precise, we should say an’s domain is the positive
naturals an : N+ → R. Observe how quickly the factorial function
n! = 1 · 2 · 3 · · · (n− 1) ·n grows: 7! = 5040, 10! = 3628800, 20! > 1018.

We’re often interested in calculating the limits of sequences as n→∞.
What happens to the terms in the sequence when n becomes large?
>>> limit(a_n, n, oo)
0
>>> limit(b_n, n, oo)
0

Both an = 1
n
and bn = 1

n! converge to 0 as n→∞.

Many important math quantities are defined as limit expressions. An
interesting example to consider is the number π, which is defined as
the area of a circle of radius 1. We can approximate the area of the
unit circle by drawing a many-sided regular polygon around the circle.
Splitting the n-sided regular polygon into identical triangular splices,
we can obtain a formula for its area An. In the limit as n→∞, the
n-sided-polygon approximation to the area of the unit-circle becomes
exact:
>>> A_n = n*tan(2*pi/(2*n))
>>> limit(A_n, n, oo)
pi

Series

Suppose we’re given a sequence an and we want to compute the sum
of all the values in this sequence

∑∞
n
an. Series are sums of sequences.

Summing the values of a sequence an : N→ R is analogous to taking
the integral of a function f : R→ R.

To work with series in SymPy, use the summation function whose
syntax is analogous to the integrate function:
>>> a_n = 1/n
>>> b_n = 1/factorial(n)
>>> summation(a_n, [n, 1, oo])
oo
>>> summation(b_n, [n, 0, oo])
E

We say the series
∑

an diverges to infinity (or is divergent) while the
series

∑
bn converges (or is convergent). As we sum together more

and more terms of the sequence bn, the total becomes closer and
closer to some finite number. In this case, the infinite sum

∑∞
n=0

1
n!

converges to the number e = 2.71828 . . ..

The summation command is useful because it allows us to compute
infinite sums, but for most practical applications we don’t need to take
an infinite number of terms in a series to obtain a good approximation.
This is why series are so neat: they represent a great way to obtain
approximations.

Using standard Python commands, we can obtain an approximation
to e that is accurate to six decimals by summing 10 terms in the
series:
>>> import math
>>> def b_nf(n):

return 1.0/math.factorial(n)
>>> sum( [b_nf(n) for n in range(0,10)] )
2.718281 52557319
>>> E.evalf()
2.718281 82845905 # true value

Taylor series

Wait, there’s more! Not only can we use series to approximate
numbers, we can also use them to approximate functions.

A power series is a series whose terms contain different powers of the
variable x. The nth term in a power series is a function of both the
sequence index n and the input variable x.

For example, the power series of the function exp(x) = ex is

exp(x) ≡ 1 + x+ x2

2 + x3

3! + x4

4! + x5

5! + · · · =
∞∑
n=0

xn

n! .

This is, IMHO, one of the most important ideas in calculus: you can
compute the value of exp(5) by taking the infinite sum of the terms
in the power series with x = 5:
>>> exp_xn = x**n/factorial(n)
>>> summation( exp_xn.subs({x:5}), [n, 0, oo] ).evalf()
148.413159102577
>>> exp(5).evalf()
148.413159102577 # the true value

Note that SymPy is actually smart enough to recognize that the infinite
series you’re computing corresponds to the closed-form expression e5:
>>> summation( exp_xn.subs({x:5}), [n, 0, oo])
exp(5)

Taking as few as 35 terms in the series is sufficient to obtain an
approximation to e that is accurate to 16 decimals:
>>> import math # redo using only python
>>> def exp_xnf(x,n):

return x**n/math.factorial(n)
>>> sum( [exp_xnf(5.0,i) for i in range(0,35)] )
148.413159102577

The coefficients in the power series of a function (also known as the
Taylor series) depend on the value of the higher derivatives of the
function. The formula for the nth term in the Taylor series of f(x)
expanded at x = c is an(x) = f(n)(c)

n! (x − c)n, where f (n)(c) is the
value of the nth derivative of f(x) evaluated at x = c. The term
Maclaurin series refers to Taylor series expansions at x = 0.

The SymPy function series is a convenient way to obtain the series
of any function. Calling series(expr,var,at,nmax) will show you
the series expansion of expr near var=at up to power nmax:
>>> series( sin(x), x, 0, 8)
x - x**3/6 + x**5/120 - x**7/5040 + O(x**8)
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>>> series( cos(x), x, 0, 8)
1 - x**2/2 + x**4/24 - x**6/720 + O(x**8)
>>> series( sinh(x), x, 0, 8)
x + x**3/6 + x**5/120 + x**7/5040 + O(x**8)
>>> series( cosh(x), x, 0, 8)
1 + x**2/2 + x**4/24 + x**6/720 + O(x**8)

Some functions are not defined at x = 0, so we expand them at a
different value of x. For example, the power series of ln(x) expanded
at x = 1 is
>>> series(ln(x), x, 1, 6) # Taylor series of ln(x) at x=1
x - x**2/2 + x**3/3 - x**4/4 + x**5/5 + O(x**6)

Here, the result SymPy returns is misleading. The Taylor series of
ln(x) expanded at x = 1 has terms of the form (x− 1)n:

ln(x) = (x− 1)− (x− 1)2

2 + (x− 1)3

3 − (x− 1)4

4 + (x− 1)5

5 + · · · .

Verify this is the correct formula by substituting x = 1. SymPy returns
an answer in terms of coordinates relative to x = 1.

Instead of expanding ln(x) around x = 1, we can obtain an equivalent
expression if we expand ln(x+ 1) around x = 0:
>>> series(ln(x+1), x, 0, 6) # Maclaurin series of ln(x+1)
x - x**2/2 + x**3/3 - x**4/4 + x**5/5 + O(x**6)

IV. Vectors

A vector ~v ∈ Rn is an n-tuple of real numbers. For example, consider
a vector that has three components:

~v = (v1, v2, v3) ∈ (R,R,R) ≡ R3.

To specify the vector ~v, we specify the values for its three components
v1, v2, and v3.

A matrix A ∈ Rm×n is a rectangular array of real numbers with m
rows and n columns. A vector is a special type of matrix; we can
think of a vector ~v ∈ Rn either as a row vector (1× n matrix) or a
column vector (n× 1 matrix). Because of this equivalence between
vectors and matrices, there is no need for a special vector object in
SymPy, and Matrix objects are used for vectors as well.

This is how we define vectors and compute their properties:
>>> u = Matrix([[4,5,6]]) # a row vector = 1x3 matrix
>>> v = Matrix([[7],

[8], # a col vector = 3x1 matrix
[9]])

>>> v.T # use the transpose operation to
Matrix([[7, 8, 9]]) # convert a col vec to a row vec

>>> u[0] # 0-based indexing for entries
4
>>> u.norm() # length of u
sqrt(77)
>>> uhat = u/u.norm() # unit vector in same dir as u
>>> uhat
[4/sqrt(77), 5/sqrt(77), 6/sqrt(77)]
>>> uhat.norm()
1

Dot product

The dot product of the 3-vectors ~u and ~v can be defined two ways:

~u · ~v ≡ uxvx + uyvy + uzvz︸ ︷︷ ︸
algebraic def.

≡ ‖~u‖‖~v‖ cos(ϕ)︸ ︷︷ ︸
geometric def.

∈ R,

where ϕ is the angle between the vectors ~u and ~v. In SymPy,
>>> u = Matrix([ 4,5,6])
>>> v = Matrix([-1,1,2])

>>> u.dot(v)
13

We can combine the algebraic and geometric formulas for the dot
product to obtain the cosine of the angle between the vectors

cos(ϕ) = ~u · ~v
‖~u‖‖~v‖ = uxvx + uyvy + uzvz

‖~u‖‖~v‖ ,

and use the acos function to find the angle measure:
>>> acos(u.dot(v)/(u.norm()*v.norm())).evalf()
0.921263115666387 # in radians = 52.76 degrees

Just by looking at the coordinates of the vectors ~u and ~v, it’s difficult
to determine their relative direction. Thanks to the dot product,
however, we know the angle between the vectors is 52.76◦, which
means they kind of point in the same direction. Vectors that are at
an angle ϕ = 90◦ are called orthogonal, meaning at right angles with
each other. The dot product of vectors for which ϕ > 90◦ is negative
because they point mostly in opposite directions.

The notion of the “angle between vectors” applies more generally
to vectors with any number of dimensions. The dot product for n-
dimensional vectors is ~u·~v =

∑n

i=1 uivi. This means we can talk about
“the angle between” 1000-dimensional vectors. That’s pretty crazy
if you think about it—there is no way we could possibly “visualize”
1000-dimensional vectors, yet given two such vectors we can tell if
they point mostly in the same direction, in perpendicular directions,
or mostly in opposite directions.

The dot product is a commutative operation ~u · ~v = ~v · ~u:
>>> u.dot(v) == v.dot(u)
True

Projections
Dot products are used for computing projections. Assume you’re
given two vectors ~u and ~n and you want to find the component of ~u
that points in the ~n direction. The following formula based on the
dot product will give you the answer:

Π~n(~u) ≡ ~u · ~n
‖~n‖2 ~n.

This is how to implement this formula in SymPy:
>>> u = Matrix([4,5,6])
>>> n = Matrix([1,1,1])
>>> (u.dot(n) / n.norm()**2)*n
[5, 5, 5] # projection of v in the n dir

In the case where the direction vector n̂ is of unit length ‖n̂‖ = 1,
the projection formula simplifies to Πn̂(~u) ≡ (~u · n̂)n̂.

Consider now the plane P defined by (1, 1, 1) · [(x, y, z)− (0, 0, 0)] = 0.
A plane is a two dimensional subspace of R3. We can decompose any
vector ~u ∈ R3 into two parts ~u = ~v + ~w such that ~v lies inside the
plane and ~w is perpendicular to the plane (parallel to ~n = (1, 1, 1)).
To obtain the perpendicular-to-P component of ~u, compute the
projection of ~u in the direction ~n:
>>> w = (u.dot(n) / n.norm()**2)*n
[5, 5, 5]

To obtain the in-the-plane-P component of ~u, start with ~u and
subtract the perpendicular-to-P part:
>>> v = u - (u.dot(n)/n.norm()**2)*n # same as u - w
[ -1, 0, 1]

You should check on your own that ~v + ~w = ~u as claimed.
Cross product

The cross product, denoted ×, takes two vectors as inputs and
produces a vector as output. The cross products of individual basis
elements are defined as follows:

ı̂× ̂ = k̂, ̂× k̂ = ı̂, k̂ × ı̂ = ̂.
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Here is how to compute the cross product of two vectors in SymPy:
>>> u = Matrix([ 4,5,6])
>>> v = Matrix([-1,1,2])
>>> u.cross(v)
[4, -14, 9]

The vector ~u × ~v is orthogonal to both ~u and ~v. The norm of the
cross product ‖~u × ~v‖ is proportional to the lengths of the vectors
and the sine of the angle between them:
(u.cross(v).norm()/(u.norm()*v.norm())).n()
0.796366206088088 # = sin(0.921..)

The name “cross product” is well-suited for this operation since it is
calculated by “cross-multiplying” the coefficients of the vectors:

~u× ~v = (uyvz − uzvy, uzvx − uxvz, uxvy − uyvx) .

By defining individual symbols for the entries of two vectors, we can
make SymPy show us the cross-product formula:
>>> u1,u2,u3 = symbols('u1:4')
>>> v1,v2,v3 = symbols('v1:4')
>>> Matrix([u1,u2,u3]).cross(Matrix([v1,v2,v3]))
[ (u2*v3 - u3*v2), (-u1*v3 + u3*v1), (u1*v2 - u2*v1) ]

The dot product is anti-commutative ~u× ~v = −~v × ~u:
>>> u.cross(v)
[4, -14, 9]
>>> v.cross(u)
[-4, 14,-9]

The product of two numbers and the dot product of two vectors
are commutative operations. The cross product, however, is not
commutative: ~u× ~v 6= ~v × ~u.

V. Mechanics

The module called sympy.physics.mechanics contains elaborate
tools for describing mechanical systems, manipulating reference
frames, forces, and torques. These specialized functions are not
necessary for a first-year mechanics course. The basic SymPy functions
like solve, and the vector operations you learned in the previous
sections are powerful enough for basic Newtonian mechanics.

Dynamics

The net force acting on an object is the sum of all the external forces
acting on it ~Fnet =

∑
~F . Since forces are vectors, we need to use

vector addition to compute the net force.

Compute ~Fnet = ~F1 + ~F2, where ~F1 = 4ı̂[N] and ~F2 = 5∠30◦[N]:
>>> F_1 = Matrix( [4,0] )
>>> F_2 = Matrix( [5*cos(30*pi/180), 5*sin(30*pi/180) ] )
>>> F_net = F_1 + F_2
>>> F_net
[4 + 5*sqrt(3)/2, 5/2] # in Newtons
>>> F_net.evalf()
[8.33012701892219, 2.5] # in Newtons

To express the answer in length-and-direction notation, use norm to
find the length of ~Fnet and atan21 to find its direction:
>>> F_net.norm().evalf()
8.69718438067042 # |F_net| in [N]
>>> (atan2( F_net[1],F_net[0] )*180/pi).n()
16.7053138060100 # angle in degrees

The net force on the object is ~Fnet = 8.697∠16.7◦[N].

1The function atan2(y,x) computes the correct direction for all vectors
(x, y), unlike atan(y/x) which requires corrections for angles in the range
[π2 , 3π

2 ].

Kinematics

Let x(t) denote the position of an object, v(t) denote its velocity, and
a(t) denote its acceleration. Together x(t), v(t), and a(t) are known
as the equations of motion of the object.

The equations of motion are related by the derivative operation:

a(t)
d

dt←− v(t)
d

dt←− x(t).

Assume we know the initial position xi ≡ x(0) and the initial velocity
vi ≡ v(0) of the object and we want to find x(t) for all later times.
We can do this starting from the dynamics of the problem—the forces
acting on the object.

Newton’s second law ~Fnet = m~a states that a net force ~Fnet applied
on an object of mass m produces acceleration ~a. Thus, we can obtain
an objects acceleration if we know the net force acting on it. Starting
from the knowledge of a(t), we can obtain v(t) by integrating then
find x(t) by integrating v(t):

a(t)
vi+
∫
dt

−→ v(t)
xi+
∫
dt

−→ x(t).

The reasoning follows from the fundamental theorem of calculus: if
a(t) represents the change in v(t), then the total of a(t) accumulated
between t = t1 and t = t2 is equal to the total change in v(t) between
these times: ∆v = v(t2)− v(t1). Similarly, the integral of v(t) from
t = 0 until t = τ is equal to x(τ)− x(0).

Uniform acceleration motion (UAM)

Let’s analyze the case where the net force on the object is constant.
A constant force causes a constant acceleration a = F

m
= constant. If

the acceleration function is constant over time a(t) = a. We find v(t)
and x(t) as follows:
>>> t, a, v_i, x_i = symbols('t a v_i x_i')
>>> v = v_i + integrate(a, (t, 0,t) )
>>> v
a*t + v_i
>>> x = x_i + integrate(v, (t, 0,t) )
>>> x
a*t**2/2 + v_i*t + x_i

You may remember these equations from your high school physics
class. They are the uniform accelerated motion (UAM) equations:

a(t) = a,

v(t) = vi + at,

x(t) = xi + vit+ 1
2at

2.

In high school, you probably had to memorize these equations. Now
you know how to derive them yourself starting from first principles.

For the sake of completeness, we’ll now derive the fourth UAM
equation, which relates the object’s final velocity to the initial velocity,
the displacement, and the acceleration, without reference to time:
>>> (v*v).expand()
a**2*t**2 + 2*a*t*v_i + v_i**2
>>> ((v*v).expand() - 2*a*x).simplify()
-2*a*x_i + v_i**2

The above calculation shows v2
f − 2axf = −2axi + v2

i . After moving
the term 2axf to the other side of the equation, we obtain

(v(t))2 = v2
f = v2

i + 2a∆x = v2
i + 2a(xf − xi).

The fourth equation is important for practical purposes because it
allows us to solve physics problems without using the time variable.

http://pyvideo.org/video/2653/dynamics-and-control-with-python
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Example: Find the position function of an object at time t = 3[s], if
it starts from xi = 20[m] with vi = 10[m/s] and undergoes a constant
acceleration of a = 5[m/s2]. What is the object’s velocity at t = 3[s]?
>>> x_i = 20 # initial position
>>> v_i = 10 # initial velocity
>>> a = 5 # acceleration (constant during motion)
>>> x = x_i + integrate( v_i+integrate(a,(t,0,t)), (t,0,t) )
>>> x
5*t**2/2 + 10*t + 20
>>> x.subs({t:3}).n() # x(3) in [m]
72.5
>>> diff(x,t).subs({t:3}).n() # v(3) in [m/s]
25 # = sqrt( v_i**2 + 2*a*52.5 )

If you think about it, physics knowledge combined with computer
skills is like a superpower!

General equations of motion

The procedure a(t)
vi+
∫
dt

−→ v(t)
xi+
∫
dt

−→ x(t) can be used to obtain
the position function x(t) even when the acceleration is not constant.
Suppose the acceleration of an object is a(t) =

√
kt; what is its x(t)?

>>> t, v_i, x_i, k = symbols('t v_i x_i k')
>>> a = sqrt(k*t)
>>> x = x_i + integrate( v_i+integrate(a,(t,0,t)), (t, 0,t) )
>>> x
x_i + v_i*t + (4/15)*(k*t)**(5/2)/k**2

Potential energy

Instead of working with the kinematic equations of motion x(t), v(t),
and a(t) which depend on time, we can solve physics problems using
energy calculations. A key connection between the world of forces and
the world of energy is the concept of potential energy. If you move
an object against a conservative force (think raising a ball in the air
against the force of gravity), you can think of the work you do agains
the force as being stored in the potential energy of the object.

For each force ~F (x) there is a corresponding potential energy UF (x).
The change in potential energy associated with the force ~F (x) and
displacement ~d is defined as the negative of the work done by the
force during the displacement: UF (x) = −W = −

∫
~d
~F (x) · d~x.

The potential energies associated with gravity ~Fg = −mĝ and the
force of a spring ~Fs = −k~x are calculated as follows:
>>> x, y = symbols('x y')
>>> m, g, k, h = symbols('m g k h')
>>> F_g = -m*g # Force of gravity on mass m
>>> U_g = - integrate( F_g, (y,0,h) )
>>> U_g
m*g*h # Grav. potential energy
>>> F_s = -k*x # Spring force for displacement x
>>> U_s = - integrate( F_s, (x,0,x) )
>>> U_s
k*x**2/2 # Spring potential energy

Note the negative sign in the formula defining the potential energy.
This negative is canceled by the negative sign of the dot product ~F ·d~x:
when the force acts in the direction opposite to the displacement, the
work done by the force is negative.

Simple harmonic motion
from sympy import Function, dsolve

The force exerted by a spring is given by the formula F = −kx. If
the only force acting on a mass m is the force of a spring, we can use
Newton’s second law to obtain the following equation:

F = ma ⇒ −kx = ma ⇒ −kx(t) = m
d2

dt2

[
x(t)
]
.

The motion of a mass-spring system is described by the differential
equation d2

dt2 x(t) + ω2x(t) = 0, where the constant ω =
√

k
m

is called
the angular frequency. We can find the position function x(t) using
the dsolve method:
>>> t = Symbol('t') # time t
>>> x = Function('x') # position function x(t)
>>> w = Symbol('w', positive=True) # angular frequency w
>>> sol = dsolve( diff(x(t),t,t) + w**2*x(t), x(t) )
>>> sol
x(t) == C1*sin(w*t) + C2*cos(w*t)
>>> x = sol.rhs
>>> x
C1*sin(w*t) + C2*cos(w*t)

Note the solution x(t) = C1 sin(ωt) + C2 cos(ωt) is equivalent to
x(t) = A cos(ωt + φ), which is more commonly used to describe
simple harmonic motion. We can use the expand function with the
argument trig=True to convince ourselves of this equivalence:
>>> A, phi = symbols("A phi")
>>> (A*cos(w*t - phi)).expand(trig=True)
A*sin(phi)*sin(w*t) + A*cos(phi)*cos(w*t)

If we define C1 = A sin(φ) and C2 = A cos(φ), we obtain the form
x(t) = C1 sin(ωt) + C2 cos(ωt) that SymPy found.

Conservation of energy: We can verify that the total energy of the
mass-spring system is conserved by showing ET (t) = Us(t) +K(t) =
constant:
>>> x = sol.rhs.subs({"C1":0,"C2":A})
>>> x
A*cos(t*w)
>>> v = diff(x, t)
-A*w*sin(t*w)
>>> E_T = (0.5*k*x**2 + 0.5*m*v**2).simplify()
>>> E_T
0.5*A**2*(k*cos(w*t)**2 + m*w**2*sin(w*t)**2)
>>> E_T.subs({k:m*w**2}).simplify()
0.5*m*(w*A)**2 # = K_max
>>> E_T.subs({w:sqrt(k/m)}).simplify()
0.5*k*A**2 # = U_max

VI. Linear algebra
from sympy import Matrix

A matrix A ∈ Rm×n is a rectangular array of real numbers with m
rows and n columns. To specify a matrix A, we specify the values for
its mn components a11, a12, . . . , amn as a list of lists:
>>> A = Matrix( [[ 2,-3,-8, 7],

[-2,-1, 2,-7],
[ 1, 0,-3, 6]] )

Use the square brackets to access the matrix elements or to obtain a
submatrix:
>>> A[0,1] # row 0, col 1of A
-3
>>> A[0:2,0:3] # top-left 2x3 submatrix of A
[ 2, -3, -8]
[-2, -1, 2]

Some commonly used matrices can be created with shortcut methods:
>>> eye(2) # 2x2 identity matrix
[1, 0]
[0, 1]
>>> zeros((2, 3))
[0, 0, 0]
[0, 0, 0]

Standard algebraic operations like addition +, subtraction -, multipli-
cation *, and exponentiation ** work as expected for Matrix objects.
The transpose operation flips the matrix through its diagonal:
>>> A.transpose() # the same as A.T
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[ 2, -2, 1]
[-3, -1, 0]
[-8, 2, -3]
[ 7, -7, 6]

Recall that the transpose is also used to convert row vectors into
column vectors and vice versa.

Row operations
>>> M = eye(3)
>>> M[1,:] = M[1,:] + 3*M[0,:]
>>> M
[1, 0, 0]
[3, 1, 0]
[0, 0, 1]

The notation M[i,:] refers to entire rows of the matrix. The first
argument specifies the 0-based row index, for example the first row
of M is M[0,:]. The code example above implements the row operation
R2 ← R2 + 3R1. To scale a row i by constant c, use the command
M[i,:] = c*M[i,:]. To swap rows i and j, use can use the Python
tuple-assignment syntax M[i,:], M[j,:] = M[j,:], M[i,:].

Reduced row echelon form

The Gauss–Jordan elimination procedure is a sequence of row
operations you can perform on any matrix to bring it to its reduced
row echelon form (RREF). In SymPy, matrices have a rref method
that computes their RREF:
>>> A = Matrix( [[2,-3,-8, 7],

[-2,-1,2,-7],
[1 ,0,-3, 6]])

>>> A.rref()
([1, 0, 0, 0] # RREF of A

[0, 1, 0, 3] # locations of pivots
[0, 0, 1, -2], [0, 1, 2] )

Note the rref method returns a tuple of values: the first value is the
RREF of A, while the second tells you the indices of the leading ones
(also known as pivots) in the RREF of A. To get just the RREF of
A, select the 0th entry form the tuple: A.rref()[0].

Matrix fundamental spaces

Consider the matrix A ∈ Rm×n. The fundamental spaces of a matrix
are its column space C(A), its null space N (A), and its row space
R(A). These vector spaces are important when you consider the
matrix product A~x = ~y as “applying” the linear transformation
TA : Rn → Rm to an input vector ~x ∈ Rn to produce the output
vector ~y ∈ Rm.

Linear transformations TA : Rn → Rm (vector functions) are
equivalent to m×n matrices. This is one of the fundamental ideas
in linear algebra. You can think of TA as the abstract description of
the transformation and A ∈ Rm×n as a concrete implementation of
TA. By this equivalence, the fundamental spaces of a matrix A tell
us facts about the domain and image of the linear transformation
TA. The columns space C(A) is the same as the image space space
Im(TA) (the set of all possible outputs). The null space N (A) is the
same as the kernel Ker(TA) (the set of inputs that TA maps to the
zero vector). The row space R(A) is the orthogonal complement of
the null space. Input vectors in the row space of A are in one-to-one
correspondence with the output vectors in the column space of A.

Okay, enough theory! Let’s see how to compute the fundamental
spaces of the matrix A defined above. The non-zero rows in the
reduced row echelon form of A are a basis for its row space:
>>> [ A.rref()[0][r,:] for r in A.rref()[1] ] # R(A)
[ [1, 0, 0, 0], [0, 1, 0, 3], [0, 0, 1, -2] ]

The column space of A is the span of the columns of A that contain
the pivots in the reduced row echelon form of A:
>>> [ A[:,c] for c in A.rref()[1] ] # C(A)
[ [ 2] [-3] [-8]

[-2], [-1], [ 2]
[ 1] [ 0] [-3] ]

Note we took columns from the original matrix A and not its RREF.

To find the null space of A, call its nullspace method:
>>> A.nullspace() # N(A)
[ [0, -3, 2, 1] ]

Determinants

The determinant of a matrix, denoted det(A) or |A|, is a particular
way to multiply the entries of the matrix to produce a single number.
>>> M = Matrix( [[1, 2, 3],

[2,-2, 4],
[2, 2, 5]] )

>>> M.det()
2

Determinants are used for all kinds of tasks: to compute areas and
volumes, to solve systems of equations, and to check whether a matrix
is invertible or not.

Matrix inverse

For every invertible matrix A, there exists an inverse matrix A−1

which undoes the effect of A. The cumulative effect of the product of
A and A−1 (in any order) is the identity matrix: AA−1 = A−1A = 1.
>>> A = Matrix( [[1,2],

[3,9]] )
>>> A.inv()
[ 3, -2/3]
[-1, 1/3]
>>> A.inv()*A
[1, 0]
[0, 1]
>>> A*A.inv()
[1, 0]
[0, 1]

The matrix inverse A−1 plays the role of division by A.

Eigenvectors and eigenvalues

When a matrix is multiplied by one of its eigenvectors the output
is the same eigenvector multiplied by a constant A~eλ = λ~eλ. The
constant λ (the Greek letter lambda) is called an eigenvalue of A.

To find the eigenvalues of a matrix, start from the definition A~eλ =
λ~eλ, insert the identity 1, and rewrite it as a null-space problem:

A~eλ = λ1~eλ ⇒ (A− λ1)~eλ = ~0.

This equation will have a solution whenever |A − λ1| = 0.2 The
eigenvalues of A ∈ Rn×n, denoted {λ1, λ2, . . . , λn}, are the roots of
the characteristic polynomial p(λ) = |A− λ1|.
>>> A = Matrix( [[ 9, -2],

[-2, 6]] )
>>> A.eigenvals() # same as solve( det(A-eye(2)*x), x)
{5: 1, 10: 1} # eigenvalues 5 and 10 with multiplicity 1
>>> A.eigenvects()
[(5, 1, [ 1]

[ 2] ), (10, 1, [-2]
[ 1] )]

2The invertible matrix theorem states that a matrix has a non-empty
null space if and only if its determinant is zero.
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Certain matrices can be written entirely in terms of their eigenvectors
and their eigenvalues. Consider the matrix Λ (capital Greek L) that
has the eigenvalues of the matrix A on the diagonal, and the matrix
Q constructed from the eigenvectors of A as columns:

Λ =

λ1 · · · 0
...

. . . 0
0 0 λn

, Q =


∣∣ |
~eλ1 · · · ~eλn∣∣ |

, then A = QΛQ−1.

Matrices that can be written this way are called diagonalizable. To
diagonalize a matrix A is to find its Q and Λ matrices:
>>> Q, L = A.diagonalize()
>>> Q # the matrix of eigenvectors
[1, -2] # as columns
[2, 1]
>>> Q.inv()
[ 1/5, 2/5]
[-2/5, 1/5]
>>> L # the matrix of eigenvalues
[5, 0]
[0, 10]
>>> Q*L*Q.inv() # eigendecomposition of A
[ 9, -2]
[-2, 6]
>>> Q.inv()*A*Q # obtain L from A and Q
[5, 0]
[0, 10]

Not all matrices are diagonalizable. You can check if a matrix is
diagonalizable by calling its is_diagonalizable method:
>>> A.is_diagonalizable()
True
>>> B = Matrix( [[1, 3],

[0, 1]] )
>>> B.is_diagonalizable()
False
>>> B.eigenvals()
{1: 2} # eigenvalue 1 with multiplicity 2
>>> B.eigenvects()
[(1, 2, [1]

[0] )]

The matrix B is not diagonalizable because it doesn’t have a full set
of eigenvectors. To diagonalize a 2×2 matrix, we need two orthogonal
eigenvectors but B has only a single eigenvector. Therefore, we can’t
construct the matrix of eigenvectors Q (we’re missing a column!) and
so B is not diagonalizable.

Non-square matrices don’t have eigenvectors and therefore don’t
have an eigendecomposition. Instead, we can use the singular value
decomposition to break up a non-square matrix A into left singular
vectors, right singular vectors, and a diagonal matrix of singular
values. Use the singular_values method on any matrix to find its
singular values.

Conclusion

I would like to conclude with some words of caution about the overuse
of computers. Computer technology is very powerful and is everywhere
around us, but let’s not forget that computers are actually very dumb:
computers are mere calculators and they depend on your knowledge
to direct them. It’s important that you learn how to do complicated
math by hand in order to be able to instruct computers to do math
for you and to check the results of your computer calculations. I
don’t want you to use the tricks you learned in this tutorial to avoid
math problems from now on and simply rely blindly on SymPy for all
your math needs. I want both you and the computer to become math
powerhouses! The computer will help you with tedious calculations
(they’re good at that) and you’ll help the computer by guiding it
when it gets stuck (humans are good at that).

Links

[ Installation instructions for jupyter notebook ]
https://jupyter.readthedocs.io/en/latest/install.html

[ The official SymPy tutorial ]
http://docs.sympy.org/latest/tutorial/intro.html

[ A list of SymPy gotchas ]
http://docs.sympy.org/dev/gotchas.html

[ SymPy video tutorials by Matthew Rocklin ]
http://pyvideo.org/speaker/583/matthew-rocklin

Book plug

The examples and math explanations in this tutorial are sourced from
the no bullshit guide series of books published by Minireference Co.
We publish textbooks that make math and physics accessible and
affordable for everyone. If you’re interested in learning more about
the math, physics, and calculus topics discussed in this tutorial,
check out the No bullshit guide to math and physics. The book
contains the distilled information that normally comes in two first-
year university books: the introductory physics book (1000+ pages)
and the first-year calculus book (1000+ pages). Would you believe
me if I told you that you can learn the same material from a single
book that is 1/7th the size and 1/10th of the price of mainstream
textbooks?

This book contains short lessons
on math and physics, written in
a style that is jargon-free and
to the point. Often calculus and
mechanics are taught as sepa-
rate subjects. It shouldn’t be like
that. If you learn calculus with-
out mechanics, it will be boring.
If you learn mechanics without
calculus, you won’t truly under-
stand what is going on. This
textbook covers both subjects
in an integrated manner.

Contents:

• high school math
• vectors
• mechanics
• differential calculus
• integral calculus
• 250+ practice problems

5½[in] × 8½[in] × 445[pages]

For more information, see the book’s website at minireference.com.

The linear algebra examples presented in Section VI are sourced
from the No bullshit guide to linear algebra. Check out the
book if you’re taking a linear algebra course of if you’re missing the
prerequisites for learning machine learning, computer graphics, or
quantum mechanics.

I’ll close on a note for potential readers who suffer from math-phobia.
Both books start with an introductory chapter that reviews all high
school math concepts needed to make math and physics accessible to
everyone. Don’t worry, we’ll fix this math-phobia thing right up for
you; when you’ve got SymPy skills, math fears you!

To stay informed about upcoming titles, follow @minireference on
twitter and check out the facebook page at fb.me/noBSguide.

https://jupyter.readthedocs.io/en/latest/install.html
http://docs.sympy.org/latest/tutorial/intro.html
http://docs.sympy.org/dev/gotchas.html
http://pyvideo.org/speaker/583/matthew-rocklin
http://minireference.com/
https://gum.co/noBSLA
https://twitter.com/minireference
http://fb.me/noBSguide

